

Changes in [3 H]-UK14304 binding to α_{2} -adrenoceptors in morphine-dependent guinea-pigs

Katia Varani, Lorenzo Beani, Clementina Bianchi, Pier Andrea Borea & 'Michele Simonato

Institute of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy

- 1 The aim of this study was to investigate the effect of a noradrenergic input in the cortex of morphinedependent animals. Binding of the \(\alpha_1\)-adrenoceptor ligand [\(^3\H)\)-prazosin did not change in cortical membranes taken from morphine-dependent as compared to control guinea-pigs. However, binding of the α_2 -adrenoceptor ligand [3H]-UK14304 showed decreased K_D (-30%) in the absence of significant changes in B_{max} , either in cortical membranes or in synaptosomes.
- Several characteristics of this phenomenon were identified. First, it occurs in a time-dependent fashion, in that it takes 5 days of chronic morphine treatment to start developing. Second, it can be observed after acute administration of high doses of morphine (100 mg kg⁻¹). Third, it does not require a connection with the locus coeruleus or with other subcortical structures, in that it can be reproduced in vitro in isolated cortical slices. Fourth, it requires the integrity of cortical structures, since it cannot be reproduced in vitro in cortical synaptosomes.
- Release studies were run to attempt identification of a functional correlate of the above observations. No changes were observed in the ability of the α₂-adrenoceptor agonist UK14304 to inhibit 35 mm K⁺evoked [3H]-noradrenaline outflow from cortical synaptosomes taken from morphine-dependent as compared to control guinea-pigs. However, a large decrease in the IC₅₀ of UK14304 for the inhibition of 35 mm K⁺-evoked [³H]-γ-aminobutyric acid ([³H]-GABA) outflow (41 vs. 501 nm) was observed in morphine-dependent as compared to control animals.
- 4 These data suggest that, in the guinea-pig, chronic morphine treatment is associated with a shift from a low to high affinity agonist state in α_2 -adrenoceptors on cortical GABA terminals.

Keywords: Morphine addiction; α₂-adrenoceptors; UK14304; noradrenaline; GABA; neocortex; binding; release

Introduction

The molecular and cellular bases of opiate addiction are still elusive. An attempt to interpret this phenomenon in terms of alterations in opiate receptors number or affinity has proven disappointing (see Loh et al., 1988). However, other studies suggest that changes in opiate receptor-regulated G proteins, adenosine 3':5'-cyclic monophosphate (cyclic AMP) and protein kinases in specific brain regions may account for important aspects of opiate addiction (Loh et al., 1988; Nestler, 1992; Nestler et al., 1993).

Among these regions, the locus coeruleus (LC) appears to be primarily implicated in the mechanism of dependence, and therefore of withdrawal (Koob & Bloom, 1988; Rasmussen et al., 1990; Maldonado et al., 1992). LC (a paired nucleus located on the floor of the fourth ventricle in the dorsal pons) contains more than 90% of the noradrenaline (NA) of the entire central nervous system (Foote et al., 1983). Specific variations in LC firing rate take place after acute and chronic administration of morphine. The LC firing rate is decreased by acute treatment with the opiate, via activation of a K+ conductance (Aghajanian & Wang, 1987; North et al., 1987). Upon chronic treatment, it returns to baseline levels, i.e. tolerance develops (Aghajanian, 1978); furthermore, dependence also develops as demonstrated by an elevation in the firing rate during withdrawal (Aghajanian, 1978). Such events are thought to take place in several mammalian species, including primates (Redmond & Krystal, 1984; Rasmussen et al., 1990).

Both extrinsic and intrinsic factors are believed to play a role in the changes of LC response during morphine addiction. As for the intrinsic factors, elegant studies suggest that an upregulation of the cyclic AMP system in the LC participates in the variations in the firing rate described above, and allow the identification of possible molecular mechanisms for the phenomenon (see Nestler et al., 1993). As for the extrinsic factors, other studies suggest that a glutamatergic input from the nucleus paragigantocellularis accounts for approximately 50% of the increase in LC firing rate during withdrawal (Rasmussen & Aghajanian, 1989; Akaoka & Aston-Jones, 1991). Taken together with other studies, these findings begin to outline a neuronal network including the dorsal horn, the nucleus paragigantocellularis and the LC, each relay of which is the site of opiate receptors and of upregulation of the cyclic AMP system during chronic exposure to morphine. During withdrawal, this situation would lead to an escalating activation of the neurones in the network (Nestler, 1992).

In the above hypothesis, the consequences of the variations in LC firing rate should be viewed as a central question in the understanding of opiate addiction. Unfortunately, little information is presently available in this regard. In normal, awake guinea-pigs, noradrenaline (NA) injected in the lateral ventricles (i.c.v.) or electrical stimulation of the LC decreases the cortical release of acetylcholine (ACh) via α_2 -adrenoceptors and increases the cortical outflow of y-aminobutyric acid (GABA) via α₁-adrenoceptors (Beani et al., 1978; Bianchi et al., 1979; Moroni et al., 1982). In morphine-dependent guineapigs, NA i.c.v. or electrical stimulation of the LC increases cortical ACh release via a1-adrenoceptors and decreases the outflow of GABA via a2-adrenoceptors (Beani et al., 1988). This inverted response to NA of cortical cholinergic structures has been confirmed in vitro in cortical slices taken from morphine-tolerant animals (Tanganelli et al., 1989), and that of GABAergic structures has been confirmed in cortical slices and synaptosomes (Beani et al., 1991). The present study was undertaken to extend these findings.

¹ Author for correspondence.

Methods

Animal and tissue preparation

Dunkin-Hartley guinea-pigs of either sex, average weight 400 to 500 g, were used in all experiments. Animals were housed under standard conditions: constant temperature (22-24°C) and humidity (55-65%), 12 h dark/light cycle, free access to food and water. Procedures involving animals were carried out in accordance with European Community and national laws and policies. Morphine tolerance and dependence was achieved by subcutaneous implants of three morphine base pellets (75 mg), one on the first day, two on the fourth (Antonelli et al., 1986). Control animals were implanted with pellets not containing morphine. All experiments (unless otherwise stated) were carried out on the seventh day.

For membrane preparation, the cerebral cortices taken from control or morphine-dependent guinea-pigs were homogenized in 50 mm Tris HCl buffer (pH 7.4) and centrifuged at 40,000 g for 20 min. The resulting pellet was homogenized and centrifuged again as described above. In tolerant animals, 1 μ m morphine was added in Tris HCl buffer to prevent possible withdrawal effects in vitro (Gillan et al., 1979). The final pellets were resuspended in assay buffer and used for binding assay.

For synaptosome preparation, the cerebral cortices taken from control or morphine-dependent guinea-pigs were homogenized in cold 0.32 M sucrose buffered with 5 mM HEPES at pH 7.4. In tolerant animals, 1 μ M morphine was added in all solutions from the onset. The homogenate was centrifuged (10 min, 1,000 g, 4°C) and the supernatant centrifuged again (20 min, 12,000 g, 4°C) to obtain a crude synaptosomal fraction in the pellet (P2).

Slices (400 μ m thick) were prepared from fronto-parietal cortices and perfused as previously described (Beani et al., 1978). Briefly, two or three slices (wet weight 50–60 mg each) were placed together in superfusion chambers (volume 0.9 ml), perfused at a rate of 0.5 ml min⁻¹ with Krebs solution (composition in mm: NaCl 118.5, KCl 4.7, CaCl₂ 2.5, MgSO₄ 1.2, KH₂PO₄ 1.2, NaHCO₃ 25, glucose 10) and bubbled with 95% O₂ and 5% CO₂. Some of the slices were perfused for 60 min with morphine (100 nm; 300 nm; 1 μ m; 3 μ m) added to the Krebs solution. In other experiments cortical slices were perfused with 1 μ m morphine for 15 or 30 min. The slices were then collected and used to prepare synaptosomes.

Radioligand binding studies

α₁-Adrenoceptor binding assay was performed essentially according to Froldi et al. (1994) using [3H]-1-(4-amino-6,7-dimethoxy-2-quinazolinyl)-4-(2-furanylcarbonyl)piperazine ([³H] -prazosin, 79.2 Ci mmol⁻¹). Saturation binding experiments were carried out in 1 ml of buffer (Tris HCl 50 mm, NaCl 140 mm, pH 7.4 at 25°C) containing membranes or synaptosomes from 5 mg (wet weight) of cortex and increasing concentrations (0.002-2 nm) of [3H]-prazosin. After 60 min incubation at 25°C, separation of bound from free radioligand was performed by rapid filtration through Whatman GF/C filters under reduced pressure using a cell harvester (Brandel, Geithersburg, MD, U.S.A.). Filters were washed three times with ice cold buffer, dried and treated with 5 ml Aquassure (NEN Research products, Boston, MA, U.S.A.). Radioactivity was determined using a LS1800 Beckman liquid scintillation counter. Non specific binding was defined in the presence of 10 μ M phentolamine and was less than 10% of total binding. Data were analysed by using the Ligand computer program (Munson & Rodbard, 1980). Protein was assayed according to the method of Lowry et al. (1951).

α₂-Adrenoceptor binding assay was performed essentially according to Opocher *et al.* (1993) using [³H]-5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline ([³H]-UK14304, 95.1 Ci mmol⁻¹). Saturation binding experiments were carried out in 1 ml of buffer (Tris HCl 50 mM, MgCl₂ 10 mM, EDTA 0.8 mM)

containing membranes or synaptosomes. Membranes in a final concentration of approximately 5 mg (wet weight) of cortex or synaptosomes were incubated for 120 min at 25°C with increasing concentrations of [³H]-UK14304 over a range of 0.1–10 nm. Non-specific binding was defined as a binding in the presence of 10 μ m phentolamine. Filters were washed and counted as described above for α_1 -adrenoceptor binding assays; again data were analysed by means of the computer program Ligand (Munson & Rodbard, 1980). In homologous displacement experiments 1 nm [³H]-UK14304 and 16 different concentrations of unlabelled UK14304 (0.03 nm-10 μ m) were used.

Release experiments

The synaptosomal pellet was resuspended in oxygenated Krebs solution containing 200 nm [3H]-NA or 40 nm [3H]-GABA, and maintained at 33°C for 45 min in the case of [3H]-NA or 20 min in the case of [3H]-GABA. Aliquots of the suspension (containing 0.8-1.2 mg protein) were then slowly injected into nylon syringe filters (0.45 μ m pore size, Micron Separation, Westboro, MA, U.S.A.) connected by tubing to a peristaltic pump and kept at 33°C in a thermostatic bath. Synaptosomes were perfused with a preoxygenated (95% O₂, 5% CO₂) Krebs solution at a flow rate of 0.5 ml min⁻¹. In the Krebs solution, ascorbic acid (60 μ M) and EDTA (30 μ M) were added for [³H]-NA experiments; β -alanine (100 μ M) and amino-oxyacetic acid (50 μM) were added for [3H]-GABA experiments. Morphine (1 μ M) was added in all solutions for synaptosomes taken from morphine-dependent guinea-pigs. This superfusion technique, based on that of Raiteri et al. (1974), has been described elsewhere (Simonato et al., 1993).

Stimulations were applied by pulses (90 s duration) of 35 mm potassium-Krebs solution (equimolar substitution of KCl for NaCl) 45 and 75 min after starting the superfusion of synaptosomes. UK14304 was applied 15 min before the second stimulation, so that the first stimulation could be used as an internal control. The perfusate was collected at 5 min intervals, scintillation fluid added, and counted in a Beckman LS6500 counter. Protein concentration in the preparation was determined by the method of Lowry (Lowry et al., 1951).

The 35 mM potassium-evoked overflow was calculated by subtracting the basal outflow from the total tritium found in the sample starting at the stimulation and in the subsequent 5 min period. The presumed basal outflow was obtained by interpolation between the sample before and after stimulation. Data were expressed as overflow evoked by the second stimulation (in the presence of the drug) divided by the overflow evoked by the first stimulation (the internal control). Under untreated conditions (i.e. no UK14304 in the second stimulation), this ratio was close to a value of 1 in all of the preparations employed (for [3 H]-NA: 0.92 ± 0.04 in control, 0.92 ± 0.13 in synaptosomes taken from morphine-dependent guinea-pigs; for [3 H]-GABA: 0.98 ± 0.05 in control, 1.01 ± 0.06 in synaptosomes taken from morphine-dependent guinea-pigs).

Drugs

All the salts used were purchased from Merck (Darmstadt, Germany). All other drugs were from Sigma (St. Louis, MO, U.S.A.), except for morphine (from Salars, Como, Italy) and UK14304 (from RBI, Natick, MA, U.S.A.). All radioactive compounds were from New England Nuclear (Boston, MA, U.S.A.).

Results

Affinity of α_2 -adrenoceptors for [3H]-UK14304 in the cerebral cortex of morphine-dependent guinea-pigs

In order to start investigating the effect of a noradrenergic input in the cerebral cortex of morphine-dependent animals, it was decided to study whether changes in adrenoceptor binding occur in the neocortex during morphine dependence which could imply changes in the response to NA. α -Adrenoceptors were selected for study because of their direct implication in the changes induced by morphine addiction (Beani *et al.*, 1988, 1991; Nestler 1992). Considering the existence of multiple types of α -adrenoceptors (α_1 and α_2) and of subtypes of each (Bylund *et al.*, 1994; Watson & Girdlestone, 1995), it was decided to begin examining the binding of a ligand selective to α_1 -relative to α_2 -adrenoceptors, [³H]-prazosin, and of a ligand selective for α_2 -relative to α_1 -adrenoceptors, [³H]-UK14304 (Watson & Girdlestone, 1995).

Binding of [3H]-prazosin to cortical membranes was not significantly changed in morphine-dependent as compared to control guinea-pigs $(B_{max}: 68.9 \pm 2.0 \text{ fmol mg}^{-1} \text{ protein in}$ controls, 65.6 ± 2.8 fmol mg⁻¹ protein in morphine-dependent animals; K_D : 0.10+0.01 nM in controls, 0.13+0.02 in morphine-dependent animals). However, a decrease in the K_D (but not in the B_{max}) of [3H]-UK14304 for α_2 -adrenoceptors was observed in cortical membranes prepared from morphine-dependent guinea-pigs as compared to controls (Figures 1a and 2a). Binding of [3H]-UK14304 in the concentration range used appeared to be monophasic (to a single site). However, since G protein coupled receptors are usually characterized by both a high and low affinity receptor population, we ran a homologous displacement experiment in an attempt to identify a low affinity site. Again, only a single binding site could be observed (Figure 2b): computer analysis failed to show a better fit to a two site than to a one site model. The K_D value obtained was not significantly different from the one calculated in saturation experiments $(0.90 \pm 0.08 \text{ versus } 0.91 \pm 0.09 \text{ nM})$.

These data suggest that an increased affinity of α_2 , but not α_1 , adrenoceptors for NA occurs in the neocortex of morphine-dependent guinea-pigs. It was decided to investigate whether this phenomenon took place presynaptically by attempting to replicate binding data in synaptosomes. In fact, binding of [3 H]-prazosin to cortical synaptosomes was not significantly changed in morphine-dependent as compared to control guinea-pigs (B_{max} : 53.4±2.5 fmol mg $^{-1}$ protein in controls, 48.9±1.3 fmol mg $^{-1}$ protein in morphine-dependent animals; K_D : 0.13±0.02 nM in controls, 0.14±0.02 in morphine-dependent animals), while binding of [3 H]-UK14304 showed a decreased K_D in the absence of significant changes in

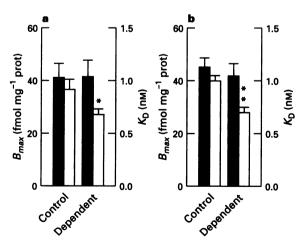


Figure 1 B_{max} (fmol mg⁻¹ protein) (solid columns) and K_D (nM) (open columns) values of [³H]-UK14304 binding to α₂-adrenoceptors in cortical membranes (a) and synaptosomes (b). K_D values in membranes were $0.91\pm0.09\,\mathrm{nM}$ in controls and $0.67\pm0.05\,\mathrm{nM}$ in morphine-dependent guinea-pigs; K_D values in synaptosomes were $1.00\pm0.04\,\mathrm{nM}$ in controls and 0.70 ± 0.04 in morphine-dependent guinea-pigs. Means±s.e.mean of 8 experiments. Significantly different from control, Student's t test for non-paired data: *P<0.05; **P<0.01.

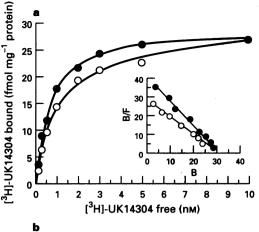


Figure 2 (a) Saturation of [³H]-UK14304 binding to cortical membranes taken from control (○) and morphine dependent (●) guinea-pigs; the inset is the corresponding Scatchard plot. Identical results were obtained in synaptosomes. (b) Homologous displacement of 1 nm [³H]-UK14304 with cold UK14304 in cortical membranes taken from control guinea-pigs.

the B_{max} (Figure 1b). Importantly, the magnitude of the change in the K_D for [3H]-UK14304 was quite similar in crude membranes and in synaptosomes (-27% in membranes, -30% in synaptosomes). The presence of morphine per se does not account for this phenomenon, since adding 1 μ M morphine during the assay did not modify [3H]-UK14304 binding (B_{max} : 31.7 ± 1.3 fmol mg $^{-1}$ protein in control synaptosomes, 32.2 ± 0.9 fmol mg $^{-1}$ protein in synaptosomes exposed to morphine; K_D : 0.85 ± 0.02 nM in control synaptosomes, 0.97 ± 0.02 in synaptosomes exposed to morphine).

Time- and dose-dependency of the increased affinity of cortical α_2 -adrenoceptors for $[^3H]$ -UK14304

As a following step, the kinetics of development of the above phenomenon were investigated, and an attempt was made to parallel the development of morphine dependence with the development of increased α_2 -adrenoceptor affinity. Dependence was tested by a naloxone test. Signs of withdrawal were recorded according to Bläsig et al. (1973). Naloxone-precipitated withdrawal was dose-dependent in guinea-pigs treated for 7 days with morphine, the dose of 3 mg kg⁻¹ giving maximal effect (Table 1). This dose was, therefore, selected to check for the development of dependence after various durations of chronic morphine treatment. Although dependence was already present at day 3, it was fully developed only by day 5 (Table 1). Increased affinity of [3 H]-UK14304 to α_2 -adrenoceptors could not be demonstrated at day 3, but had begun to develop at day 5, as shown by a 17% decrease in K_D as com-

Table 1 Withdrawal signs induced by naloxone in guinea-pigs treated with morphine or placebo

	Exploring	Jumping	Wet dog shakes	Diarrhoea	
Naloxone					
$0.3 \text{mg kg}^{-1} \text{i.p.}$					
Morphine day 7	19 ± 4	4 ± 3	4 ± 1	79%	
Naloxone					
$1 \text{ mg kg}^{-1} \text{ i.p.}$					
Morphine day 7	74 ± 19	17 ± 8	6 ± 1	100%	
Naloxone					
$3 \mathrm{mg}\mathrm{kg}^{-1}$ i.p.					
Morphine day 3	42 ± 12	1 ± 1	1 ± 0	75%	
Morphine day 5	104 ± 26	16 ± 8	3 ± 1	100%	
Morphine day 7	126 ± 22	17 ± 7	9 ± 1	100%	
Placebo day 7	4 ± 1	0 ± 0	1 ± 0	0%	
Naloxone					
$10 \text{mg kg}^{-1} \text{i.p.}$					
Morphine day 7	102 ± 15	14 ± 7	7 ± 2	100%	
Naloxone					
$10 \text{mg kg}^{-1} \text{i.p.}$					
Morphine					
$100 \text{mg kg}^{-1} \text{i.p.}$	31 ± 13	4 ± 2	1 ± 0	20%	
5 6 1					

Means \pm s.e.mean of 5-8 experiments. Signs of withdrawal have been identified and scored according to Bläsig *et al.* (1973). The incidence of the following signs was counted for 1 h after injection of naloxone: exploring (walking episodes, or standing up on hindlegs against the wall of the cage, or sniffing, or digging); jumping (vigorous jumps with all four feet off the ground); wet dog shakes (brief episodes of rapid repetitive shaking of the entire trunk). The presence of diarrhoea was checked and is shown here as % of responders.

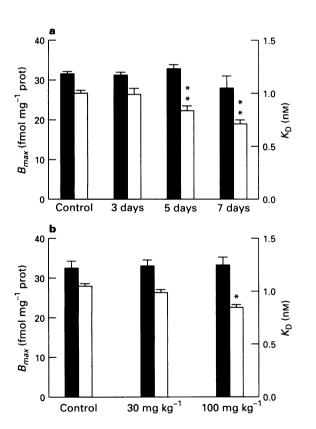


Figure 3 B_{max} (fmol mg⁻¹ protein) (solid columns) and $K_{\rm D}$ (nM) (open columns) values of [³H]-UK14304 binding to α_2 -adrenoceptors after chronic (a) and acute (b) morphine administration. Means \pm s.e.mean of 4–5 experiments. Significantly different from control, Student's t test for non-paired data: *P<0.05; **P<0.01.

pared to controls (Figure 3a). No significant change in the B_{max} was observed at any time-point.

Furthermore, to assess whether an acute morphine treatment was sufficient to increase the affinity of α_2 -adrenoceptors for [3H]-UK14304, other animals were killed 1 h after a single

dose of morphine injected i.p. A small but significant decrease in K_D for [3 H]-UK14304 (approximately -15%) was observed after administration of morphine 100 mg kg $^{-1}$ but not after morphine 30 mg kg $^{-1}$ (Figure 3b), in the absence of changes in the B_{max} . Importantly, this dose of morphine was capable of inducing acute dependence, as shown by a naloxone test (Table 1).

In vitro reproducibility of the findings

One question raised by the above findings is whether they directly depend on the effects of morphine on the cerebral cortex or indirectly on the consequences of the variations in the firing pattern of the locus coeruleus in the course of morphine addiction (Aghajanian, 1978). In an attempt to address this point, cerebral cortex slices were prepared from naive guinea-pigs and divided in two groups: the first group was kept in perfusion for 15, 30 or 60 min with a Krebs solution containing morphine at concentrations in the range of those found in addicted animals (Goldstein & Schulz, 1973); the second group was perfused with normal Krebs. The [3H]-UK14304 binding experiment was then run using synaptosomes separately prepared from each group of slices. The above observation that acute morphine administration is sufficient to induce a decrease in the K_D of [³H]-UK14304 binding to α₂-adrenoceptors argues that synaptosomes prepared from slices of the first group should display an increased affinity for [3H]-UK14304 if connections with the locus coeruleus are not necessary for that phenomenon to occur. In fact, this proved to be the case. The phenomenon was dependent on the concentration of morphine (Figure 4a), and a 30 min perfusion with 1 μ M morphine was sufficient to induce a significant reduction in the K_D for [3H]-UK14304 (Figure 4b).

Furthermore, in order to check whether isolated nerve terminals were sufficient for the expression of the phenomenon, the same experimental design was applied to synaptosomes, i.e. synaptosomes were prepared from naive animals and kept in morphine or in control Krebs solution for one hour before running the binding experiment. No significant changes in K_D or B_{max} were observed for [3 H]-UK14304 in synaptosomes treated for one hour with 1 μ M morphine compared to controls (B_{max} : 30.1 \pm 0.6 fmol mg $^{-1}$ protein in control synaptosomes,

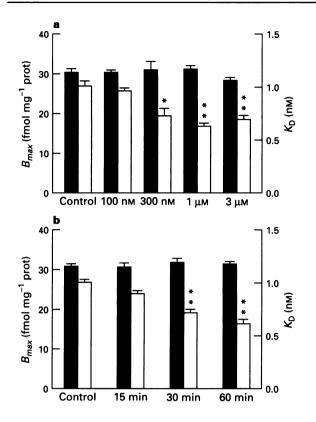


Figure 4 B_{max} (fmol mg⁻¹ protein) (solid columns) and K_D (nM) (open columns) values of [3 H]-UK14304 binding to α_2 -adrenoceptors in synaptosomes prepared from slices perfused for 1h with a Krebs solution containing morphine at different concentrations (a), and in synaptosomes prepared from slices perfused with morphine 1 μ M for different lengths of time (b). Means \pm s.e.mean of 4–5 experiments. Significantly different from control, Student's t test for non-paired data: *P < 0.05; **P < 0.01.

 28.1 ± 0.9 fmol mg⁻¹ protein in synaptosomes treated with morphine; K_D : 1.15 ± 0.04 nM in control synaptosomes, 1.02 ± 0.04 in synaptosomes treated with morphine).

Shift to the left of the dose-response curve for α_2 -adrenoceptor-mediated inhibition of cortical [3H]-GABA (but not [3H]-NA) outflow in morphine-dependent guinea-pigs

The above findings suggest that morphine-dependence is associated with an increased affinity of cortical presynaptic α₂adrenoceptors for [3H]-UK14304. These receptors are likely to be functionally involved in the inhibitory modulation of the release of neurotransmitters. Therefore, an attempt was made to identify whether the phenomenon has functional relevance, and on which neurotransmitters it applies. To this aim, the effect of the α₂-selective agonist UK14304 on the outflow of [3H]-NA and [3H]-GABA in synaptosomes prepared from control and morphine-dependent guinea-pigs was studied. We chose to study NA and GABA release because: (1) cortical noradrenergic terminals contain α2-adrenoceptors exerting a feedback inhibition on the release of the neurotransmitters (Harsing & Vizi, 1991; Maura et al., 1992; Tomasini et al., 1992); (2) GABAergic terminals contain α₂-adrenoceptors which are implicated in the regulation of GABA release in morphine-dependent guinea-pigs (Beani et al., 1991).

UK14304 concentration-dependently decreased 35 mM K⁺-evoked [³H]-NA overflow in cortical synaptosomes taken from control guinea-pigs, with an IC₅₀ of 46 nM (Figure 5). Maximal effect (approximately -60%) was reached at a concentration of 1 μ M. No significant change in the effects of UK14304 was observed in synaptosomes taken from morphine-dependent animals (Figure 5). Furthermore, no significant change in

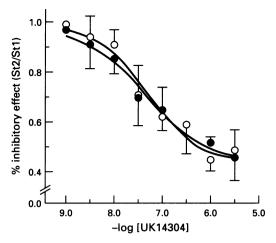


Figure 5 Effect of UK14304 on 35 mm K $^+$ -evoked [3 H]-noradrenaline ([3 H]-NA) overflow in cortical synaptosomes taken from control (\bigcirc) and morphine-dependent (\bigcirc) guinea-pigs. Means \pm s.e.mean of 8 experiments. IC₅₀ value for control = 46 nm (27–78) and for morphine-dependent = 40 nm (26–62) with 95% confidence limits in parentheses.

maximal [³H]-NA uptake (calculated after preincubation with a single concentration of [³H]-NA (200 nM) and a 45 min washout) or in its 35 mM K⁺-evoked overflow (first stimulation) were detected in morphine-dependent animals as compared to controls (uptake: 5.15 ± 0.25 pmol mg⁻¹ protein in controls, 7.46 ± 1.04 pmol mg⁻¹ protein in morphine-dependent animals; 35 mM K⁺-evoked overflow: $4.16\pm0.48\%$ of content in controls, $4.06\pm0.24\%$ of content in morphine-dependent animals).

UK14304 also concentration-dependently decreased 35 mM K⁺-evoked [³H]-GABA overflow in cortical synaptosomes taken from control guinea-pigs, with an IC₅₀ of 501 nM (Figure 6). Maximal inhibitory effect was approximately –25%. Concentrations of UK14304 higher than 3 μM occasionally produced a paradoxical, most likely non-specific, stimulating effect. A highly significant shift to the left in the concentration-response curve was observed in synaptosomes prepared from morphine-dependent guinea-pigs, in the absence of changes in

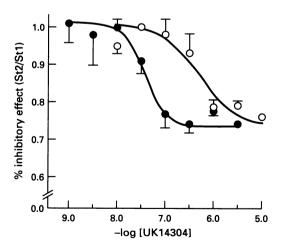


Figure 6 Effect of UK14304 on $35\,\mathrm{mm}$ K⁺-evoked [3 H]-GABA overflow in cortical synaptosomes taken from control (\bigcirc) and morphine-dependent (\bigcirc) guinea-pigs. Means \pm s.e.mean of 8 experiments. The mean IC₅₀ of 8 separate dose-response experiments in synaptosomes taken from control animals ($501\,\mathrm{nm}$ (219-1148)) significantly differs from the one calculated in synaptosomes taken from morphine-dependent animals ($41\,\mathrm{nm}$ (30-56), 95% confidence limits shown in parentheses): P < 0.01, Student's t test for non-paired data.

the maximal effect (Figure 6). The IC₅₀ for the inhibitory effect of UK14304 on 35 mM K⁺-evoked [³H]-GABA overflow in morphine-dependent animals (41 nM) was similar to the one calculated for the effect on [³H]-NA outflow. Finally, no significant change in [³H]-GABA uptake (calculated after preincubation with a single 40 nM [³H]-GABA concentration and a 45 min wash-out) or in its 35 mM K⁺-evoked overflow (first stimulation) were detected in morphine-dependent animals as compared to controls (uptake: 1.76 ± 0.19 pmol mg⁻¹ protein in controls, 1.46 ± 0.17 pmol mg⁻¹ protein in morphine-dependent animals; 35 mM K⁺-evoked overflow: $5.53\pm0.42\%$ of content in controls, $5.20\pm0.54\%$ of content in morphine-dependent animals).

Discussion

Binding to α_2 -adrenoceptors in the cerebral cortex of morphine-treated guinea-pigs

Binding to α -adrenoceptors has been extensively studied in morphine-dependent rats. Consistent with the present study, no significant changes in cortical α_1 -adrenoceptors have been obtained (Hamburg & Tallman, 1981). However, the absence of selective α_1 -adrenoceptor agonists precludes the possibility of a more detailed investigation, and therefore variations in binding to these receptors cannot be ruled out on the basis of the data presented in this study.

In contrast, the cortical α_2 -adrenoceptor number has been shown to be increased (Hamburg & Tallman, 1981), unchanged (Vicentini *et al.*, 1983; Carlson & Cooper, 1985) or decreased (Smith *et al.*, 1989) in morphine-dependent rats. The reasons for these discrepancies are not clear. As opposed to the present study, none of those studies could demonstrate a change in the affinity of α_2 -adrenoceptors for [3 H]-clonidine, the ligand used in all cases. The present study is the first to employ a highly selective α_2 -ligand ([3 H]-UK14304). Therefore, the low specificity of [3 H]-clonidine and/or species differences may account for this discrepancy.

It only proved possible for us to demonstrate a high affinity site for [³H]-UK14304 binding both when approaching this problem by saturation or by homologous displacement experiments. In fact, the present saturation experiments are consistent with other studies in which this agonist has been used in the same concentration range in other species (Loftus et al., 1984; Meana et al., 1989; Gelbmann et al., 1990). An implication of the homologous displacement experiment (Swillens et al., 1995) is that, if a low affinity site for [³H]-UK14304 exists (as demonstrated for other agonists binding G protein-coupled receptors – see for example Luthin et al., 1995), this should be much less represented than the high affinity site and/or should have a K_D shifted no more than 1 log unit from the K_D of the high affinity site.

Several characteristics of the increased affinity of α_2 -adrenoceptors for the selective ligand [3 H]-UK14304 have been identified in this study. First, this phenomenon can be observed in synaptosomes, suggesting an involvement of α_2 -adrenoceptors located presynaptically. The participation of other receptors located on the cell body of neurones and/or on glial cells cannot be ruled out, and is indeed suggested by the observation that the change in affinity is identical in membranes and in synaptosomes. However, we decided to pursue the consequences of the changes in this subgroup of receptors (presynaptic), and all the subsequent data and discussion will focus on these.

Second, the increase in synaptosomal α_2 -adrenoceptor affinity to [³H]-UK14304 occurs in a time-dependent fashion, in that it takes 5 days of chronic morphine treatment to start developing. This observation, together with the other that morphine dependence in this model system is detectable around day 3 and is fully developed by day 5 of treatment, suggests that morphine dependence is a prerequisite for the increased α_2 -adrenoceptor affinity to occur. This phenomenon can also be

observed after a single administration of a high dose of morphine which induces acute dependence. Although it could be speculated that the same molecular mechanism underlies acute and chronic morphine-induced increases in α_2 -adrenoceptor affinity, no direct evidence has been obtained in this regard in the present study. Nevertheless, it will be assumed that this is the case for the discussion of our *in vitro* data.

Third, the development of increased affinity of α_2 -adrenoceptors for [3H]-UK14304 does not require a connection with the LC or with other subcortical structures. One question raised by the findings discussed thus far is whether they depend directly upon the action of morphine on the cortex or indirectly on the effects of morphine on the LC and/or on other areas connected with the cortex. The observation that the phenomenon can be reproduced in vitro in isolated cerebral cortex slices perfused with morphine for more than 30 min argues in favour of the former hypothesis. The increase in α_2 adrenoceptor affinity for [3H]-UK14304 occurs in vitro in a time- and concentration-dependent manner, and is quantitatively identical to the one observed ex vivo, suggesting that the same mechanism may underlie both events. Therefore, the effect of morphine on intracortical structures appears to be sufficient to explain the phenomenon. Indirect effects on areas connected with the cortex may be involved, but are not necessary for an explanation of the observed changes.

However, the integrity of cortical structures (presumably of intact neurones) is necessary for the occurrence of an increase in α_2 -adrenoceptor affinity for [3H]-UK14304. In fact, although this phenomenon appears to take place presynaptically, it could not be reproduced exposing isolated terminals (synaptosomes) to morphine at concentrations and for times identical to those employed in the above *in vitro* experiments, where synaptosomes were prepared from slices exposed to morphine. This observation argues that the preservation of an anatomical connection between the terminals and the cell body of intrinsic cortical neurones (for example, GABAergic neurones) during morphine treatment is required for the changes in presynaptic α_2 -adrenoceptor affinity.

Further pharmacological studies will be needed in order to establish the subtype of α_2 -adrenoceptor involved in the phenomenon described. However, it can be hypothesized they are homologous of the human α_{2A} -subtype, because this appears to be the predominant subtype in the cerebral cortex (Ordway *et al.*, 1993).

Pursuit of functional correlates for the findings

Cortical presynaptic α_2 -adrenoceptors are known to be localized on multiple types of neurones, including autoreceptors on NA (Harsing & Vizi, 1991; Maura et al., 1992; Raiteri et al., 1992; Tomasini et al., 1992), and heteroreceptors on GABA terminals (Beani et al., 1991; Ferraro et al., 1993). The present release studies identify a subpopulation of cortical terminals where a change in α_2 -adrenoceptors occurs in morphine-treated animals. In fact, no changes were observed in the ability of the selective α_2 -adrenoceptor agonist UK14304 to inhibit 35 mM K⁺-evoked [3 H]-NA overflow from cortical synaptosomes of morphine-dependent as compared to control guineapigs. However, a large (1 log unit) decrease in the IC₅₀ for the inhibition of [3 H]-GABA overflow was observed in morphine-dependent animals. This made the IC₅₀ values overlap the one calculated for the inhibition of [3 H]-NA overflow.

It is difficult to parallel these release and binding data, unless one assumes that the receptor binding [3 H]-UK14304 with a $K_{\rm D}$ of approximately 1 nM is the same one that mediates inhibition of release with an IC $_{50}$ of approximately 40 nM. This does not appear to be an unlikely hypothesis, since multiple explanations can be put forward to interpret the discrepancies between $K_{\rm D}$ and IC $_{50}$ values: first, the $K_{\rm D}$ relates to the most simple event (binding of the ligand to the receptor) while the IC $_{50}$ underlies a series of complex events connecting the activation of receptor-coupled transducing systems to the phenomenon of release; second, temperature, buffer composition,

times of exposure to the agonist and membrane potential of the preparation are different under the conditions of the binding and release experiments. Furthermore, such discrepancies are not unusual: for example, clonidine in the neocortex of the rat binds to its high affinity site with a K_D of 0.4 nM (U'Prichard et al., 1979), but inhibits [³H]-NA release with an IC₅₀ of approximately 10 nM (Maura et al., 1992). On the basis of these considerations, it will be assumed for the rest of this discussion that the same α_2 -adrenoceptor binds [³H]-UK14304 with a K_D of 1 nM and mediates inhibition of [³H]-NA release with an IC₅₀ of approximately 40 nM.

If this is the case, a receptor with low affinity for UK14304 should modulate GABA release in normal animals, since the IC₅₀ for UK14304-mediated inhibition is approximately 500 nm. This receptor may speculatively be identified either as the low affinity site of the α_2 -adrenoceptor described thus far or as a distinct subtype. This finding is in agreement with a previous study (Maura et al., 1992) that clonidine inhibits [3 H]-5-hydroxytryptamine ([3 H]-5-HT) release approximately ten times less potently than [3 H]-NA release (i.e. it is more potent on auto- than on heteroreceptors). The fact that this hypothetical low affinity site could not be observed in binding experiments may depend on a relatively minor representation in the cortex and/or on a small difference in the K_D compared to the high affinity site (Swillens et al., 1995, see above).

Therefore, these data suggest that a change in α_2 -adrenoceptor agonist affinity or expression of a new α_2 -adrenoceptor subtype (similar or identical to the one present on NA terminals) occurs on GABA terminals of morphine-dependent guinea-pigs. Other studies have shown a shift to the left in the dose-response curve for clonidine inhibition of electrically-evoked NA release from cerebral cortex slices (Tomasini *et al.*, 1992): this phenomenon could be observed only when stimulating at 1 Hz (not at 3 Hz), suggesting that other more subtle changes in α_2 -adrenoceptor physiology may occur during morphine dependence.

Based on the assumption made above, [3H]-GABA release studies are consistent with binding studies, in that (1) the maximal inhibition was unchanged, in agreement with the absence of variations in the B_{max} , while (2) a shift to the left in the concentration-response curve for the release of [3H]-GABA was observed, which coincides with a decrease in the K_D for [3H]-UK14304; moreover, the observation of such a shift in only one population of terminals is consistent with a relatively much smaller decrease in the K_D (which is calculated for all cortical synaptosomes).

The observation that the maximal inhibitory effect of UK14304 is higher for [${}^{3}H$]-NA compared to [${}^{3}H$]-GABA release is consistent with a greater impact of α_2 -adrenoceptors on the modulation of NA than that of GABA terminals, as ex-

pected for an autoreceptor. It is important to stress that the above findings are most likely not an artifact due to changes in the uptake of the neurotransmitter and/or to changes in the responsivity of the terminals to depolarizing stimuli, which are identical under control and morphine-dependence conditions. Acute morphine treatments inhibit the release of both cortical NA (Montel et al., 1974; Arbilla & Langer, 1978; Göthert & Wehking, 1980) and GABA (Antonelli et al., 1986). Therefore, consistent with other studies (Antonelli et al., 1986; Werling et al., 1988), this observation suggests that tolerance has developed in the system.

In conclusion, these data suggest that chronic morphine treatment in the guinea-pig is associated with a shift from a low to a high affinity state or with expression of a new subtype of α_2 -adrenoceptors on cortical GABA terminals. In the latter hypothesis, this new subtype should possess pharmacological characteristics similar to those of the α_2 -adrenoceptor subtype located on noradrenergic terminals; however, the present data provide little support for this suggestion, and further studies will be needed to test the hypothesis. We propose that this phenomenon is functionally relevant, in that (1) in intact animals, NA i.c.v. or electrical stimulation of the LC increase cortical GABA outflow via α_1 -adrenoceptors in controls (Moroni et al, 1982) but decrease it via α_2 -adrenoceptors in morphine-dependent guinea-pigs (Beani et al., 1988); (2) the same inverted response to NA can be observed in vitro in slices and synaptosomes taken from control vs. morphine-dependent guinea-pigs (Beani et al., 1991).

Finally, the clinical relevance of the observation presented here may be suggested. It has been demonstrated that inhibitory α2-adrenoceptors are present on human cortical GA-BAergic terminals, even in the prevalence of stimulating α_1 adrenoceptors (Ferraro et al., 1993). This arrangement of the functional connections between a noradrenergic input and GABA is therefore similar in the human, in the rat and in the guinea-pig cortex (Ferraro et al., 1993). Furthermore, an increase in the number of \alpha-adrenoceptors has been observed in the platelets of heroin addicts (Garcia-Sevilla et al., 1986): platelets have been proposed as a diagnostic and research tool for the study of biogenic amines in human neurologic disorders (Stahl, 1977). Increased α_2 -adrenoceptor-mediated effects on cortical GABA terminals in heroin addicts may be implicated in some important aspects of heroin addiction, such as insomnia, anxiety and benzodiazepine abuse.

This work was supported by a Regione Emilia Romagna and a MURST 40% grant.

References

- AGHAJANIAN, G.K. (1978). Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal response by clonidine. *Nature*, **276**, 184-188.
- AGHAJANIAN, G.K. & WANG, Y.-Y. (1987). Common alpha-2 and opiate effector mechanisms in the locus coeruleus: intracellular studies in brain slices. *Neuropharmacol.*, **26**, 789-800.
- AKAOKA, H. & ASTON-JONES, G. (1991). Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J. Neurosci., 11, 3830 3830
- ANTONELLI, T., BEANI, L., BIANCHI, C., RANDO, S., SIMONATO, M. & TANGANELLI, S. (1986). Cortical acetylcholine release is increased and γ-aminobutyric acid outflow is reduced during morphine withdrawal. Br. J. Pharmacol., 89, 853-860.
- ARBILLA, S. & LANGER, S.Z. (1978). Morphine and β-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. *Nature*, 271, 559-561.
- BEANI, L., BIANCHI, C., FERRARO, L., MORARI, M., SIMONATO, M., SPALLUTO, G. & TANGANELLI, S. (1991). Alpha₂ adrenoceptor-mediated decrease in γ -aminobutyric acid outflow in cortical slices and synaptosomes during morphine tolerance. *J. Pharmacol. Exp. Ther.*, **258**, 472–476.
- BEANI, L., BIANCHI, C., GIACOMELLI, A. & TAMBERI, F. (1978). Noradrenaline inhibition of acetylcholine release from guinea-pig brain. *Eur. J. Pharmacol.*, **48**, 89-93.
- BEANI, L., BIANCHI, C., TANGANELLI, S., ANTONELLI, T., SIMONATO, M. & RANDO, S. (1988). Inversion of the α_2 and α_1 noradrenergic control of the cortical release of acetylcholine and γ -aminobutyric acid in morphine-tolerant guinea-pigs. J. Pharmacol. Exp. Ther., 247, 294–301.
- BIANCHI, C., SPIDALIERI, G., GUANDALINI, P., TANGANELLI, S. & BEANI, L. (1979). Inhibition of acetylcholine outflow from guineapig cerebral cortex following locus coeruleus stimulation. Neurosci. Lett., 14, 97-100.

- BLÄSIG, J., HERZ, A., REINHOLD, K. & ZIEGLGÄNSBERGER, S. (1973). Development of physical dependence on morphine in respect to time and dosage and quantification of the precipitated withdrawal syndrome in rats. *Psychopharmacol.*, 33, 19-38.
- BYLUND, D.B., EIKENBERG, D.C., HIEBLE, J.P., LANGER, S.Z., LEFKOWITZ, R.B., MINNEMAN, K.P., MOLINOFF, P.B., RUFFO-LO, R.R. & TRENDELENBURG, U. (1994). International Union of Pharmacology nomenclature of adrenoceptors. *Pharmacol. Rev.*, 46, 121-136.
- CARLSON, K.R. & COOPER, D.O. (1985). Morphine dependence and protracted abstinence: regional alterations in CNS radioligand binding. *Pharmacol. Biochem. Behav.*, 23, 1059-1063.
- FERRARO, L., TANGANELLI, S., CALÒ, G., ANTONELLI, T., FABRIZI, A., ACCIARRI, N., BIANCHI, C., BEANI, L. & SIMONATO, M. (1993). Noradrenergic modulation of γ-aminobutyric acid outflow from the human cerebral cortex. *Brain Res.*, 629, 103 108.
- FOOTE, S.L., BLOOM, F.E. & ASTON-JONES, G. (1983). Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. *Physiol. Rev.*, 63, 844-914.
- FROLDI, G., GUERRA, L., PANDOLFO, L., CHINELLATO, A., RAGAZZI, E., CAPARROTTA, L., BOREA, P.A. & FASSINA, G. (1994). Phentolamine and hypoxia: modulation of contractility and α₁ adrenoceptors in isolated rat atria. Naunyn-Schmied. Arch. Pharmacol., 350, 563-568.
- GARCIA-SEVILLA, J.A., UGEDO, L., ULIBARRI, I. & GUTIERREZ, M. (1986). Heroin increases the density and sensitivity of platelet α₂-adrenoceptors in human addicts. *Psychopharmacol.*, 88, 489–492
- GELBMANN, C.M. & MÜLLER, W.E. (1990). Specific decrease of high-affinity agonist states of alpha₂-adrenoceptors in the aging mouse brain. J. Neural Transm., 79, 131-136.
- GILLAN, M.G.C., KOSTERLITZ, H.W., ROBSON, L.E. & WATER-FIELD, A.A. (1979). The inhibitory effects of presynaptic α-adrenoceptor agonists on contractions of guinea-pig ileum and mouse vas deferens in the morphine-dependent and withdrawn states produced *in vitro*. *Br. J. Pharmacol.*, 66, 601-608.
- GOLDSTEIN, A. & SCHULZ, R. (1973). Morphine-tolerant longitudinal muscle strip from guinea-pig ileum. Br. J. Pharmacol., 48, 655-666.
- GÖTHERT, M. & WEHKING, E. (1980). Inhibition of calcium-induced noradrenaline release from central noradrenergic neurons by morphine. *Experientia*, 36, 239.
- HAMBURG, M. & TALLMAN, J.F. (1981). Chronic morphine administration increases the apparent number of α_2 -adrenergic receptors in rat brain. *Nature*, **291**, 493-495.
- HARSING, L.G. & VIZI, E.S. (1991). Evidence that two stereochemically different alpha-2 adrenoceptors modulate norepinephrine release in rat cerebral cortex. J. Pharmacol. Exp. Ther., 256, 44-40
- KOOB, G.F. & BLOOM, F.E. (1988). Cellular and molecular mechanisms of drug dependence. Science, 242, 715-723.
- LOFTUS, D.J., STOLK, J.M. & U'PRICHARD, D.C. (1984). Binding of the imidazoline UK-14304, a putative full alpha₂-adrenoceptor agonist, to rat cerebral cortex membranes. *Life Sci.*, 35, 61-69.
- LOH, H.H., TAO, P.-L. & SMITH, A.P. (1988). Role of receptor regulation in opioid tolerance mechanisms. Synapse, 2, 457-462.
- LOWRY, O.H., ROSEBROUGH, N.J., FARR, A. & RANDALL, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265-275.
- LUTHIN, D.R., OLSSON, R.A., THOMPSON, R.D., SAWMILLER, D.R. & LINDEN, J. (1995). Characterization of two affinity states of adenosine A_{2a} receptors with a new radioligand, 2-[2-(4-amino-3-[125 I]iodophenyl)ethylamino]adenosine. *Mol. Pharmacol.*, 47, 307-313.
- MALDONADO, R., STINUS, L., GOLD, L.H. & KOOB, G.F. (1992). Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J. Pharmacol. Exp. Ther., 261, 669-677.
- MAURA, G., BONANNO, G. & RAITERI, M. (1992). Presynaptic α_2 -adrenoceptors mediating inhibition of noradrenaline and 5-hydroxytryptamine release in rat cerebral cortex: further characterization as different α_2 -adrenoceptor subtypes. *Naunyn-Schmied. Arch. Pharmacol.*, 345, 410–416.
- MEANA, J.J., BARTUREN, F. & GARCIA-SEVILLA, J.A. (1989). Characterization and regional distribution of α₂-adrenoceptors in postmortem human brain using the full agonist [³H]UK 14304. *J. Neurochem.*, **52**, 1210–1217.
- MONTEL, H., STARKE, K. & WEBER, F. (1974). Influence of morphine and naloxone on the release of noradrenaline from rat brain cortex slices. *Naunyn-Schmied. Arch. Pharmacol.*, 283, 357-369.

- MORONI, F., BIANCHI, C., MONETI, G., TANGANELLI, S., SPIDA-LIERI, G., GUANDALINI, P. & BEANI, L. (1982). Release of GABA from the guinea-pig neocortex induced by electrical stimulation of the locus coeruleus or by norepinephrine. *Brain.* Res., 232, 216-221.
- MUNSON, P.J. & RODBARD, D. (1980). Ligand: a versatile computerized approach for characterization of ligand binding systems. Anal. Biochem., 107, 220-239.
- NESTLER, E.J. (1992). Molecular mechanisms of drug addiction. J. Neurosci., 12, 2439-2450.
- NESTLER, E.J., HOPE, B.T. & WIDNELL, K.L. (1993). Drug addiction: a model for the molecular basis of neural plasticity. *Neuron*, 11, 995-1006.
- NORTH, R.A., WILLIAMS, J.T., SUPRENANT, A. & CHRISTIE, M.J. (1987). Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. *Proc. Natl. Acad. Sci. U.S.A.*, **84**, 5487 5491.
- OPOCHER, G., BOREA, P.A., UCCELLI, L., FRACCAROLLO, D., PONCHIA, A., NOVENTA, D., VARANI, K. & ZACCARIA, M. (1993). Effect of high altitude hypoxia on α₂-adrenergic receptors. J. Auton. Nervous System, 43, 98.
- ORDWAY, G.A., JACONETTA, S.M. & HALARIS, A.E. (1993). Characterization of subtypes of alpha-2 adrenoceptors in the human brain. J. Pharmacol. Exp. Ther., 264, 967-976.
- RAITERI, M., ANGELINI, F. & LEVI, G. (1974). A simple apparatus for studying the release of neurotransmitters from synaptosomes. *Eur. J. Pharmacol.*, 25, 411-414.
- RAITERI, M., BONANNO, G., MAURA, G., PENDE, M., ANDRIOLI, G.C. & RUELLE, A. (1992). Subclassification of release regulating α₂-autoreceptors in human brain cortex. *Br. J. Pharmacol.*, 107, 1146-1151.
- RASMUSSEN, K. & AGHAJANIAN, G.K. (1989). Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: attenuation by lesions of the nucleus paragiganto-cellularis. *Brain Res.*, 505, 346-350.
- RASMUSSEN, K., BEITNER-JOHNSON, D.B., KRYSTAL, J.H., AGHA-JANIAN, G.K. & NESTLER, E.J. (1990). Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J. Neurosci., 10, 2308 – 2317.
- REDMOND, D.E. & KRYSTAL, J.H. (1984). Multiple mechanisms of withdrawal from opioid drugs. *Ann. Rev. Neurosci.*, 7, 443-478.
- SIMONATO, M., BREGOLA, G., MUZZOLINI, A., BIANCHI, C. & BEANI, L. (1993). Characterization of K⁺-evoked [³H]d-aspartate outflow in the rat hippocampus in vitro. Neurochem. Int., 23, 555-560.
- SMITH, C.B., MOISES, H.C., SPENGLER, R.N. & HOLLINGSWORTH, P.J. (1989). Changes in α_2 -adrenoceptor number and function in brains of morphine-dependent rats. *Eur. J. Pharmacol.*, **161**, 111-119.
- STAHL, S.M. (1977). The human platelet: a diagnostic and research tool for the study of biogenic amines in psychiatric and neurologic disorders. *Arch. Gen. Psychiat.*, 34, 509.
- SWILLENS, S., WAELBROECK, M. & CHAMPEIL, P. (1995). Does a radiolabelled ligand bind to a homogeneous population of noninteracting receptor sites? *Trends Pharmacol. Sci.*, 16, 151-155.
- TANGANELLI, S., ANTONELLI T., SIMONATO, M., SPALLUTO, G., TOMASINI, C., BIANCHI, C. & BEANI, L. (1989). α₁-Adrenoceptor-mediated increase in acetylcholine release in brain slices during morphine tolerance. J. Neurochem., 53, 1072-1076.
- TOMASINI, C., GUIDORZI, R., BIANCHI, C. & BEANI, L. (1992). Clonidine inhibition of norepinephrine release from normal and morphine-tolerant guinea-pig cortical slices. J. Neurochem., 58, 1440-1446.
- U'PRICHARD, D.C., BECHTEL, W.D., ROUOT, B.M. & SNYDER, S.H. (1979). Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: effect of 6-hydroxydopamine. *Mol. Pharmacol.*, **16**, 47-60.
- VICENTINI, L.M., MILLER, R.J. & ROBERTSON, M.J. (1983). Chronic opiate treatment does not modify α₂-adrenergic receptors in rat cerebral cortex, kidney and in neurotumor cell line NCB20. *Eur. J. Pharmacol.*, **95**, 265-270.
- WATSON, S. & GIRDLESTONE, D. (1995). 1995 receptor and ion channel nomenclature. *Trends Pharmacol. Sci.*, Supplement, 9–12.
- WERLING, L., MCMAHON, P.N. & COX, B.M. (1988). Selective tolerance at mu and kappa opioid receptors modulating norepinephrine release in guinea-pig cortex. *J. Pharmacol. Exp. Ther.*, 247, 1103-1106.

(Received July 7, 1995 Revised August 3, 1995 Accepted August 23, 1995)